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Abstract

Combination operators for fusing different sources of evidence are investigated
from the perspective of maximising proximity or similarity to a consistent solution.
Operators are defined as the composition of an extension function and a normalisation
method where the former identifies a unique joint belief assignment from two marginals
and the latter redistributes mass associated with the empty set to other pairs of focal
sets. This definition motivates an initial study into normalisation methods followed
by a related examination of extension functions. The normalisation of a joint belief
assignment is taken to be the closest or most similar consistent assignment according
to a predefined metric. A range of distance and similarity metrics are considered
and their associated normalisation methods are then identified. Extension functions
are based on identifying the joint belief assignment with the required marginals that
are closest to a consistent assignment. In effect this means finding the assignments
which are closest to their normalised assignment. Issues of uniqueness are discussed
and a number of operators are identified on the basis of extension functions and
normalisation methods derived from particular metrics. Finally, we attempt to justify
this approach by arguing that the very decision to intersect two sources of evidence
carries with it an implicit assumption of consistency, rather than an assumption of
independence as in Dempster’s rule.

Keywords Evidence combination, closest consistent solution, distance metric, similarity
measure, normalisation method, extension function
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1 Introduction

In Dempster-Shafer theory the fundamental mechanism for combining information from

different sources is through Dempster’s rule. In fact this operator plays a central role in

the whole theory as it also underlies the definitions of conditional belief and plausibility,

these notions being fundamental to belief updating. Dempster’s rule has a number of

advantages, these being mainly linked to a range of desirable algebraic properties. For

example, commutativity and associativity mean that when fusing evidence from multi-

ple sources the order in which the operation is performed does not change the outcome.

Consequently, the combination of evidence from a large number of sources can be carried

out recursively, greatly improving computational efficiency. Also, the computational cost

of a single application of the rule is negligible since no optimisation is involved. These

pragmatic considerations are emphasised by Haenni [7] in his critique of a recent paper

proposing an alternative weighted combination operator [13]. However, despite such ad-

vantages Dempster’s rule has faced sustained criticism over the years. For instance, Zadeh

[22] provides a now famous example illustrating that if the two sources of information

are highly conflicting the application of Dempster’s rule can lead to counter intuitive re-

sults. Another well known problem relates to the failure of Dempster’s rule to satisfy

idempotence; i.e. combining two identical basic belief assignments can yield a different

assignment. This would seem counter intuitive especially when it is observed that the

independence assumption of Dempster’s rule may have resulted in inconsistencies which

were then subsequently removed. If the two sources of evidence provide identical informa-

tion what could be the possible source of such inconsistency? Indeed more generally it is

not necessarily the case when combining two (possibly) consistent sources of evidence that

Dempster’s rule will identify a consistent solution. The generation of such inconsistency

when sources may be consistent clearly results from the independence assumption under-

lying the rule and we shall subsequently argue that the decision to intersect two pieces of

information has associated with it an implicit assumption of consistency rather than one of

independence. Certainly, as emphasised by Voorbraak [20] the independence assumption

of Dempster’s rule is very strong and may often be unrealistic in practice. These issues

will be discussed in more detail in section 4.

A number of alternative operators have been proposed in the literature (e.g. [2],

[4], [21]) in order to address some of the criticisms of Dempster’s rule. Many of these

provide alternative mechanisms for eliminating inconsistency to overcome the difficulties

highlighted by Zadeh [22]. For example, Yager [21] suggests that mass associated with

pairs of elements with empty intersection should be reallocated to the whole universe,

whereas Dubois and Prade [4] propose that such mass should be allocated to the union

of the focal sets involved. On the other hand, Baldwin [2] and more recently Cattaneo

[5] have proposed alternatives to the independence assumption of Dempster’s rule. More



specifically, Baldwin suggests that the family of probability distributions induced by the

belief and plausibility measures of the combined basic belief assignment should correspond

to the intersection of the two families of probabilities generated by the two basic belief

assignments that are being combined. This is a rather natural idea but unfortunately

turns out to be problematic as a means of defining a combination operator since the

intersection of two families of distributions both generated from basic belief assignments

is not necessarily representable in terms of belief and plausibility measures. Cattaneo

has proposed that the combination operator should return the least specific assignment

that minimizes inconsistency between the two sources. This is justified with regard to a

monotonicity principle whereby if possible the combined belief measure should exceed both

belief measures from the two evidence sources. In this paper we shall propose an alternative

perspective on combination operators based on measures of similarity to (or distance from)

a consistent solution. To give a clearer explanation of the proposed methodology it is useful

to consider in more detail the structure of Dempster’s rule.

As an operator Dempster’s rule can be viewed as the composition of two distinct but

related operations. Given basic belief assignments m1 and m2, the first step is to apply

an extension function in order to identify a unique joint belief assignment with m1 and

m2 as marginals. In Dempster’s rule the joint belief assignment selected is m1 × m2.

Given this joint belief assignment the second step is to remove inconsistencies through

a normalisation process whereby joint mass allocated to pairs of focal sets with empty

intersection is reallocated in some way to the focal set pairs with non-empty intersection.

In Dempster’s rule this normalisation process involves simply rescaling the pairs of focal

sets so that they sum to one. Once a normalised joint belief assignment is obtained the

combined belief assignment is formed by aggregating over all possible non-empty sets that

result from intersecting focal sets of m1 and m2. Now clearly there are alternatives to both

the extension function and the normalisation method of Dempster’s rule. In this paper

we investigate normalisation methods which identify the most similar consistent solution

according to some distance metric (or similarity measure). Intuitively the idea is that nor-

malisation is a form of error correction, the overall effects of which it is therefore desirable

to minimize. On this basis we will argue that the extension function should identify a joint

belief assignment for which normalisation has a minimal effect. Overall this is equivalent

to the assumption that the extension function should select an assignment most similar to

a consistent assignment. Given this approach it is natural for us to deal initially with the

issue of normalisation and then consider extension functions. In this respect we shall in-

vestigate the types of normalization methods and subsequent extension functions resulting

from a range of different distance metrics and similarity measures. Initially, however, we

introduce the basic notation and concepts fundamental to this treatment of combination

operators.



2 Notation and Fundamental Concepts

Following the terminology of Smets [18]. Let Ω denote the set of all possible states of the

world. We then assume that there is a true but unknown state of the world w∗ ∈ Ω about

which beliefs can be formulated on the basis of evidence.

Definition 1. Basic Belief Assignment

A basic belief assignment is a function m : 2Ω → [0, 1] such that m (∅) = 0 and
∑

S⊆Ωm (S) = 1

Intuitively m (S) corresponds to the level of belief that can be associated with the

constraint w∗ ∈ S but which cannot then be allocated to more precise constraints w∗ ∈ T

for T ⊂ S. In other words, m (S) is the level of belief that the exact constraint representing

the current state of knowledge regarding w∗ is ‘w∗ ∈ S’. For any basic belief assignment

we can restrict our attention to those subsets of Ω, referred to as focal sets, which have

non-zero mass.

Definition 2. Focal Sets

The focal sets of a basic belief assignment m is given by:

F = {F ⊆ Ω : m (F ) > 0}

Given a basic belief assignment we can define lower and upper measures quantifying

the level of belief in the assertion that w∗ ∈ S for S ⊆ Ω as follows:

Definition 3. Belief and Plausibility Measures

Bel (S) =
∑

F∈F :F⊆S

m (F ) and Pl (S) =
∑

F∈F :F∩S 6=∅

m (F )

Now suppose that we have two sources of information regarding w∗ represented by basic

belief assignments m1 and m2. We then define a joint belief assignment with marginal

assignments m1 and m2 as follows:

Definition 4. Joint Belief Assignment with Marginals m1 and m2

Let m1 : F → [0, 1] and m2 : G → [0, 1] be basic belief assignments on 2Ω with focal sets

F ⊆ 2Ω and G ⊆ 2Ω respectively. Then a joint belief assignment with marginals m1 and

m2 is a function m : F × G → [0, 1] satisfying:

∀F ∈ F
∑

G∈G

m (F,G) = m1 (F ) and

∀G ∈ G
∑

F∈F

m (F,G) = m2 (G)



Intuitively, m (F,G) quantifies the level of belief of some third agent (carrying out

the combination) that the evidence from source one supports the exact state of knowl-

edge being ‘w∗ ∈ F ’ while that from source two supports the exact state of knowledge

being ‘w∗ ∈ G’. In the following definition we introduce a number of sets of joint belief

assignments defined on the cross product space F × G:

Definition 5. We introduce the following sets of joint belief assignments:

(i) Set of joint belief assignments on F × G.

JM =

{

m : F × G → [0, 1] :
∑

F∈F

∑

G∈G

m (F,G) = 1

}

(ii) Set of joint belief assignments on F × G consistent with the intersection

operation.

CJM = {m ∈ JM : ∀ (F,G) ∈ F × G where F ∩G = ∅ then m (F,G) = 0}

(iii) Set of joint belief assignments on F × G with marginals m1 and m2.

JM1,2 =

{

m ∈ JM : ∀F ∈ F
∑

G∈G

m (F,G) = m1 (F ) and ∀G ∈ G
∑

F∈F

m (F,G) = m2 (G)

}

Definition 5 gives us a way of explicitly defining consistency between assignments

whereby two assignmentsm1 andm2 are said to be consistent provided JM1,2∩CJM 6= ∅.

We can define volumes corresponding to convex subsets of [0, 1]k where k = |F| × |G|

to represent JM, CJM and JM1,2 geometrically as follows:

Definition 6. Volume Representations

Let F × G = {Hi : i = 1, . . . , k} be some enumeration of the joint focal elements. Then

we define:

V (JM) =

{

〈p1, . . . , pk〉 ∈ [0, 1]k :

n
∑

i=1

pi = 1

}

V (CJM) = {〈q1, . . . , qk〉 ∈ V (JM) : qi = 0 if Hi = (F,G) and F ∩G = ∅}

W.l.o.g we assume that Hi : i = 1, . . . , k are enumerated such that {(F,G) : F ∩G = ∅} =

{H1, . . . ,Hc} in which case:

V (CJM) = {〈q1, . . . , qk〉 ∈ V (JM) : qi = 0 for i = 1, . . . , c}

V (JM1,2) =






〈p1, . . . , pk〉 ∈ V (JM) : ∀F ∈ F
∑

Hi=(F,G):G∈G

pi = m1 (F ) , ∀G ∈ G
∑

Hi=(F,G):F∈F

pi = m2 (G)









Given this notation we can define a normalisation method simply as a function mapping

from the set of joint belief assignments to the set of consistent joint belief assignments in

such away as already consistent assignments remain unchanged.

Definition 7. Normalisation Method

A normalisation method is a function ν : JM → CJM such that if m ∈ CJM then

ν (m) = m

An extension function can be defined as a function taking as arguments a basic belief

assignment m1 on F and m2 on G and mapping to an element of JM1,2:

Definition 8. Extension Function

An extension function is a function mapping from a pair of basic belief assignments to a

joint belief assignment:

e : MF ×MG → JM such that e (m1,m2) ∈ JM1,2

and where

MF =

{

m : F → [0, 1] :
∑

F∈F

m (F ) = 1

}

and MG =

{

m : G → [0, 1] :
∑

G∈G

m (G) = 1

}

We can then define any combination operator in terms of the composition of an exten-

sion function and a normalisation method as follows:

Definition 9. Combination Operator

Given an extension function e and a normalisation method ν we define the combination

operator ⊕e,ν according to:

∀S ⊆ Ω m1 ⊕e,ν m2 (S) =
∑

(F,G):F∩G=S

m (F,G) where

m = ν ◦ e (m1,m2)

In the following sections we will consider normalisation methods and extension func-

tions based on distance metrics (and similarity measures) defined between joint belief

assignments in JM. For normalisation, given m ∈ JM we shall attempt to identify the

element m̂ ∈ CJM closest (or most similar) to m. For extension functions, when given

two assignments m1 ∈ MF and m2 ∈ MG the aim will be to identify the joint assignment

m ∈ JM1,2 closest to an assignment in CJM. Given that, according to our criterion, for

any m ∈ JM1,2 the closest member of CJM is its normalisation m̂ ∈ CJM then this is

equivalent to identifying them ∈ JM1,2 for which the distance from its normalised assign-

ment m̂ ∈ CJM is minimal (see figure 1). For mathematical convenience, we shall tend

to work in the volume representations of JM, CJM and JM1,2 (as given in definition

6) since the definition of distance metrics and similarity measures is more straightforward

in these spaces.
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JM1,2

m
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Figure 1: Diagram showing the joint belief assignment nearest to a consistent assignment

3 Similarity Based Normalisation Methods

In this paper we adopt an approach whereby the similarity between two joint belief assign-

ments in JM is measured in terms of the similarity or distance between the corresponding

elements in V (JM). Specifically, we investigate quantifying this degree of similarity using

three different types of metric. In the first instance the similarity between two elements

~p, ~p ′ ∈ V (JM) is taken to be ‖~p− ~p ′‖ where ‖•‖ is a norm defined on the vector space

R
k. In fact we shall restrict our attention to p-norm distance metrics defined as follows:

Definition 10. p-norm Distance Metrics 1

∥

∥~p− ~p ′
∥

∥

s
=

(

k
∑

i=1

∣

∣pi − pi
′
∣

∣

s

)

1
s

where s ≥ 1

Probably, the most commonly used p-norm is the so-called Euclidean norm, with s = 2:

‖~p‖2 =

√

√

√

√

n
∑

i=1

p2i

Secondly we shall consider quantifying the distance between two elements of V (JM)

using T-indistinguishability operators (sometimes called fuzzy equivalence relations)[23]

[3]. Such operations generalize the concept of an equivalence relation and provide a mea-

sure of the degree to which two elements cannot be distinguished from each other.

In the final case we shall view normalisation as a form of updating based on the

assumption that the two sources of evidence are consistent. From this perspective we

propose to quantify the distance between an element in V (JM) and a corresponding

element in V (CJM) in terms of the relative change in information context resulting from

updating the former to the latter. This information change will be measured using cross

(relative) entropy, a choice that in itself requires a probabilistic interpretation of joint

belief assignments. We shall subsequently return to discuss this issue in more detail.

1In this definition we shall depart from the standard notation and use the parameter s instead of p.
This is merely to avoid any confusion with ~p ∈ V (JM)



3.1 p-norm Normalisation Methods

In this subsection we shall investigate normalisation methods that can be justified on the

basis of the p-norm family of distance metrics defined on V (JM). Now for ~p ∈ V (JM)

we shall denote its normalisation by ~̂p ∈ V (CJM) (i.e. ν (~p) = ~̂p). Notice that since for

all s ≥ 1 ‖~p − ~p‖ = 0 it follows that if ~p ∈ V (CJM) then ~̂p = ~p as required by definition

7. For this reason the following results will focus on elements of V (JM) − V (CJM).

The next theorem shows that for s ≥ 2 p-norms support a normalisation method that

redistributes the mass associated with the empty set uniformly to all remaining focal set

pairs.

Initially we introduce the following definition of the set of positive normalisations for

any ~p. This is the set of normalisations where the only mass to be redistributed is from

focal pairs with empty intersection to focal pairs with non-empty intersection. For such

normalisations p̂i ≥ pi for i = c + 1, . . . , k or alternatively p̂i = pi + ǫi where ǫi ≥ 0 for

i = c+ 1, . . . , k. This class of normalisation excludes those where mass is also reallocated

between pairs of focal elements with non-empty intersection.

Definition 11. Positive Normalisations of Joint Belief Assignments

Let ~p ∈ V (JM)− V (CJM) then the set of positive normalisations of ~p is defined as:

V (CJM)≥~p = {~q ∈ V (CJM) : qi ≥ pi for i = c+ 1, . . . , k}

Theorem 12. Given s ∈ N, s ≥ 2, for any joint belief assignment ~p ∈ V (JM) −

V (CJM) there exists a unique joint belief assignment ~q ∈ V (CJM) for which the dis-

tance evaluated by the p-norm ‖~p− ~q‖s is minimal, where ~q = ~̂p given by:

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k

Proof. Clearly, minimizing

‖~p − ~q‖s is equivalent to minimizing Ds = (‖~p − ~q‖s)
s

Hence, for any ~p we want to find ~q that minimizes:

Ds (~p, ~q) =

c
∑

j=1

psj +

k
∑

j=c+1

|pj − qj|
s

We now show that only ~q ∈ V (CJM)≥~p need be considered. To see this suppose ~q ∈

V (CJM) is such that qi < pi for i ∈ I and qi ≥ pi for i ∈ J where I, J forms a partition

of the set of indicies {c+ 1, . . . , k}. Then we can always find another ~q′ ∈ V (CJM)≥~p



with q′i = pi for i ∈ I and qi ≥ q′i ≥ pi for i ∈ J . In this case, for any s ≥ 2 we have that:

Ds (~p, ~q) =

c
∑

i=1

psi +
∑

i∈I

(pi − qi)
s +

∑

i∈J

(qi − pi)
s

≥
c
∑

i=1

psi +
∑

i∈J

(

q′i − pi
)s

= Ds

(

~p, ~q′
)

Hence we may substitute the absolute value in the above expression for ordinary brackets,

thus obtaining:

Ds (~p, ~q) =
c
∑

j=1

psj +
k
∑

j=c+1

(qj − pj)
s

Since ~q satisfies the condition g(~q) =
∑k

j=c+1 qj − 1 = 0, we can use Lagrange multipliers

to find ~q minimizing Ds with the condition g(~q) = 0: Let us consider F = Ds + λg.

{

∂F
∂qj

= s (qj − pj)
s−1 + λ = 0 j = c+ 1, ...k (1)

∑k
j=c+1 qj = 1

From (1),

qj − pj =

(

−
λ

s

) 1
s−1

(2)

k
∑

j=c+1

qj −
k
∑

j=c+1

pj = 1−
k
∑

j=c+1

pj =

(

−
λ

s

)
1

s−1

(k − c)

∑c
j=1 pj

k − c
=

(

−
λ

s

) 1
s−1

and from (2), qj = pj +
∑c

j=1 pj

k−c
.

In order to prove that ~q with qj = pj +
∑c

j=1 pj

k−c
is a minimum, let us calculate the

Hessian of F at ~q.

∂2Fs

∂q2j
(~q) = s(s− 1) (qj − pj)

s−2 > 0

∂2Ds

∂qi∂qj
(~q) = 0 i 6= j

The Hessian matrix of F at ~q is diagonal with positive entries in it, which assures the

minimality of ~q.



Notice that theorem 12 also allows for the case when
∑k

i=c+1 pi = 0. This means that

the joint belief assignment is totally inconsistent in that it assigns zero mass to all focal

set pairs (F,G) for which F ∩ G 6= ∅. In this case, then according to theorem 12 the

normalised assignment should assign equal mass to all such focal pairs so that:

qi =
1

k − c
: i = c+ 1, . . . , k

This would perhaps seem intuitive since, in the completely inconsistent case, there is no

reason a priori to distinguish between focal pairs with non-empty intersection.

It is also interesting to note that theorem 12 does not hold when s = 1 according to

which

‖~p− ~q‖s=1 =

n
∑

i=1

|pi − qi|

For this metric we have the following result:

Theorem 13. Given ~p ∈ V (JM)−V (CJM) then ‖~p− ~q‖1 is minimal for ~q ∈ V (CJM)

if and only if ~q = ~̂p, where ~̂p has the following form:

p̂i =

{

0 : i = 1, . . . , c

pi + ǫi where ǫi ≥ 0 and
∑k

i=c+1 ǫi =
∑c

i=1 pi : i = c+ 1, . . . , k

Proof. (⇒)

∀~q ∈ V (CJM) then qi = pi + ǫ where ǫi ∈ [−1, 1]

Now since
∑k

i=c+1 qi = 1 then
∑k

i=c+1 ǫi =
∑c

i=1 pi and therefore

‖~p− ~q‖1 =
c
∑

i=1

pi +
k
∑

i=c+1

|ǫi| ≥
c
∑

i=1

pi +
k
∑

i=c+1

ǫi = 2
c
∑

i=1

pi

In the case where ǫi ≥ 0 : i = c+ 1, . . . , k then

‖~p− ~q‖1 =
c
∑

i=1

pi +
k
∑

i=c+1

ǫi = 2
c
∑

i=1

pi

and hence ~q is a minimum as required.

(⇐)

Suppose ǫj < 0 for some j ∈ {c+ 1, . . . , k} then

‖~p− ~q‖1 =
c
∑

i=1

pi +

k
∑

i=c+1

|ǫi| >
c
∑

i=1

pi +

k
∑

i=c+1

ǫi = 2

c
∑

i=1

pi

and hence ~q is not a minimum as required.



Hence, from theorem 13 we have that for any ~p ∈ V (JM)−V (CJM) the norm ‖•‖1

restricts normalisations to the set V (CJM)≥~p (definition 11) but does not discriminate

between normalisations of this class.

We now consider a distance metric based on max which can be obtained by taking the

limit of ‖ • ‖s as s → ∞.

Definition 14. The maximum norm ‖•‖∞ on R
n is defined as:

∀~x ∈ R
n ‖~x‖∞ = max {|xi| : i = 1, . . . , n}

Theorem 15. ‖•‖s converges pointwise to ‖•‖∞ as s tends to infinity. That is:

∀~x ∈ R
n, lim

s→∞
‖~x‖s = ‖~x‖∞

The normalisation result obtained for any s-norm with s ≥ 2 (theorem 12), together

with the pointwise convergence of p-norms (theorem 15), yield the following normalisation

result for the maximum norm:

Theorem 16. For any joint belief assignment ~p ∈ V (JM)− V (CJM), then ‖~p− ~q‖∞
is minimal across ~q ∈ V (CJM) for ~q = ~̂p where:

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k

Proof. Let ~̂p be the consistent normalisation of ~p given by:

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k

and let ~q be an arbitrary but fixed vector in V (CJM).

Now, for s ∈ N, s ≥ 2, let as = ‖~p− ~q‖s ∈ R and let bs = ‖~p − ~̂p‖s ∈ R. From

theorem 15 we know that the sequence (as)
∞
s=2 converges to the real number a = ‖~p− ~q‖∞

(i.e. lims→∞ as = a). Similarly, the sequence (bs)
∞
s=2 converges to the real number b =

∥

∥

∥~p− ~̂p
∥

∥

∥

∞
(i.e. lims→∞ bs = b). Hence, the sequence (cs)

∞
s=2 defined by:

cs = as − bs = ‖~p− ~q‖s − ‖~p− ~̂p‖s

converges such that:

lim
s→∞

cs = lim
s→∞

(as − bs) = lim
s→∞

as − lim
s→∞

bs = a− b = ‖~p− ~q‖∞ − ‖~p− ~̂p‖∞

Furthermore, we know that for any s ∈ N, s ≥ 2 the distance ‖~p − ~̂p‖s is minimal across

V (CJM), which means that all elements in the sequence (cs)
∞
s=2 are strictly positive:

0 < ‖~p− ~q‖s − ‖~p − ~̂p‖s = cs



Taking limits on both sides, we obtain the following inequality:

0 ≤ lims→∞cs = ‖~p− ~q‖∞ − ‖~p− ~̂p‖∞

Hence,

‖~p − ~̂p‖∞ ≤ ‖~p− ~q‖∞

as required.

Notice that the uniqueness of the minimum for p-norms is not preserved when taking

limits. In other words, the normalisation ~̂p of ~pmay not be the unique element in V (CJM)

minimizing the distance to ~p under the maximum norm. For instance, let us assume that

k = 4, c = 2 and that ~p, ~̂p and q are as follows:

~p = 〈0.3, 0.2, 0.25, 0.25〉

~̂p = 〈0, 0, 0.5, 0.5〉

~q = 〈0, 0, 0.55, 0.45〉

In this case:

‖~p − ~̂p‖∞ = ‖~p− ~q‖∞ = 0.3

Interestingly, the lack of uniqueness is due to the components j = 1, . . . , c and if we restrict

ourselves to the components j = c+1, . . . , k then ~̂p is indeed the unique element minimizing

the distance defined by ‖•‖. More precisely, for any ~q ∈ V (CJM) the maximum distance

from ~p can be expressed as follows:

‖~p − ~q‖∞ = max (‖ 〈p1, . . . , pc〉 ‖∞, ‖pc+1 − qc+1, . . . , pk − qk‖∞)

Obviously, only the second part of this expression ‖pc+1−qc+1, . . . , pk−qk‖∞ is dependent

on ~q. For the above example we have that:

‖~p − ~̂p‖∞ = ‖~p− ~q‖∞ = ‖ 〈p1, p2〉 ‖∞ = 0.3 whereas

‖ 〈p3 − p̂3, p4 − p̂4〉 ‖∞ = 0.25 < ‖ 〈p3 − q3, p4 − q4〉 ‖∞ = 0.3

Indeed if we redefine the distance metric so that it is only based on the components

j = c+ 1, . . . , k then uniqueness can be restored as follows:

Definition 17.

∀~p ∈ V (JM) , ∀~q ∈ V (CJM) ‖~p − ~q‖>c
∞ = ‖pc+1 − qc+1, . . . , pk − qk‖∞



Theorem 18. For any joint belief assignment ~p ∈ V (JM)− V (CJM) for which
∑c

j=c+1 pj > 0, there is a unique joint belief assignment ~q ∈ V (CJM) for which ‖~p−~q‖>c
∞

is minimal, given by ~q = ~̂p where:

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k

Proof. For ~̂p the normalisation of ~p defined such that

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k

we have that:

|pj − p̂j| = |pi − p̂i| =

∑c
j=1 pj

k − c
∀i, j = c+ 1, . . . k

Also since p̂j > pj then

|pj − p̂j| = p̂j − pj for j = c+ 1, . . . , k

Hence

∀j = c+ 1, . . . , k ‖~p− ~̂p‖>c
∞ = p̂j − pj

Now for any other ~q ∈ V (CJM) for which ~q 6= ~̂p, since

k
∑

j=c+1

p̂j =
k
∑

j=c+1

qj

there must exist a coordinate j such that qj > p̂j > pj. Therefore,

‖~p − ~q‖>c
∞ ≥ qj − pj > p̂j − pj = ‖~p− ~̂p‖>c

∞

as required.

3.2 T-indistinguishability Normalisation Methods

In this section we will use the theory of indistinguishability operators to define a range of

similarity measures between elements of V (JM). We will then show how these measures

can be used to provide justification for a number of normalisation methods.

Indistinguishability operators are a generalization of the notion of equivalence to allow

for a non-binary measure of similarity between elements. They are also referred to as

fuzzy equalities and fuzzy equivalence relations depending on the context in which they

are applied.



Definition 19. A fuzzy relation E : X×X → [0, 1] on a set X is a T -indistinguishability

measure if and only if for all x, y, z of X satisfies the following properties

• E(x, x) = 1 (Reflexivity)

• E(x, y) = E(y, x) (Symmetry)

• T (E(x, y), E(y, z)) ≤ E(x, z) (T-Transitivity)

E(x, y) can be viewed as the degree of similarity or indistinguishability between ele-

ments x and y. The function T in definition 19 models a conjunctive operation and is

referred to as a t-norm [9]. Hence, the third axiom intuitively states that the degree to

which x is similar to z exceeds the degree to which x is similar to y and y is similar to z,

for any element y. Clearly, this is a generalization of the triangle inequality.

Definition 20. Continuous t-norms

A continuous t-norm is a function T : [0, 1]×[0, 1] → [0, 1] satisfying the following axioms:

∀a, b, c ∈ [0, 1]

• T is continuous

• T (a, 1) = a (boundary condition)

• If b ≤ c then T (a, b) ≤ T (a, c) (monotonicity)

• T (a, b) = T (b, a) (commutativity)

• T (a, T (b, c)) = T (T (a, b) , c) (associativity)

T is Archimedean iff moreover

• T (a, a) < a, if a 6= 0, 1

Continuous Archimedean t-norms can be generated according to an additive generation

function f as can be seen from the following theorem (see [9]):

Theorem 21. Characterisation Theorem for t-norms

A function T : [0, 1] × [0, 1] → [0, 1] is a continuous archimedean t-norm iff there exists a

strictly decreasing continuous function f : [0, 1] → [0,∞] with f(1) = 0 such that

∀a, b ∈ [0, 1] T (a, b) = f (−1) (f (a) + f (b))

where

f (−1) (a) =











1 : a < 0

f−1 (a) : a ∈ [0, f (0)]

0 : a > f (0)

If f (0) = ∞ then T is strict, otherwise T is non-strict.



Example 22. Examples of Archimedian t-norms

• Lukasiewicz t-norm: T (x, y) = max (0, x+ y − 1), f(x) = 1− x

• Product t-norm: If T (x, y) = x× y, f(x) = −log(x)

• Schweizer and Sklar: Tλ (x, y) =
[

max
(

0, xλ + yλ − 1
)]

1
λ , fλ(x) = 1−xλ

λ
where

λ 6= 0

A t-norm T naturally generates a T-indistinguishability measure as follows:

Definition 23. Given a continuous t-norm T we can define a T-indistinguishability op-

erator according to:

ET (x, y) = T (
→
T (x|y) ,

→
T (y|x)) where

→
T (x|y) = sup {α ∈ [0, 1] |T (α, x) ≤ y}

The operator
→
T (•|•) in definition 23 is referred to as the residuation of T and corre-

sponds to the logical implication operator derived from T .

Theorem 24. For T a continuous archimedean t-norm with additive generator f it holds

that:

∀x, y ∈ [0, 1] ET (x, y) = f (−1) (|f (x)− f (y)|)

Example 25. T - indistinguishability operators based on t-norms

• Lukasiewicz t-norm: If T (x, y) = max (0, x+ y − 1) then ET (x, y) = 1− |x− y|

• Product t-norm: If T (x, y) = x× y then ET (x, y) = min
(

x
y
, y
x

)

• Schweizer and Sklar: If Tλ (x, y) =
[

max
(

0, xλ + yλ − 1
)]

1
λ then ET (x, y) =

(

1−
∣

∣xλ − yλ
∣

∣

)
1
λ

Given a T-indistinguishability operator defined on [0, 1] we now consider how this can

be extended to provide a measure of similarity between the elements of V (JM). The

first approach we consider is based on a quasi-arithmetic mean defined in terms of the

generator function f as follows:

Definition 26. Similarity Measures based on Quasi-Arithmetic Means

Let T be a continuous Archimedean t-norm with generator function f then we define

the following measure of similarity between joint belief assignments ~p ∈ V (JM) and

~q ∈ V (CJM):

AS (~p, ~q) = f (−1)

(

∑k
i=1 f (ET (pi, qi))

k

)



Example 27. For the Schweizer and Sklar family of t-norms

Tλ (a, b) =
[

max
(

0, xλ + yλ − 1
)]

1
λ with λ > 0 then:

ASλ (~p, ~q) = f (−1)







∑k
i=1 fλ

(

(

1−
∣

∣pλi + qλi
∣

∣

)
1
λ

)

k






= f

(−1)
λ

(

∑k
i=1

∣

∣pλi − qλi
∣

∣

λk

)

=

[

1−

∑k
i=1

∣

∣pλi − qλi
∣

∣

k

]
1
λ

Lemma 28. Let h be a decreasing and concave function h : R → R and consider the map

g(x1, .., xn) =
∑n

i=1 h(xi). The maximum of g in the region defined by the restrictions

ai ≤ xi ≤ b i = 1, ..., n and
∑n

i=1 xi = b for fixed ai, b is reached at the points with

coordinates xi = ai for all i = 1, ..., n except for exactly one xj with corresponding aj =

argmax {ai : i = 1, . . . , n} for which xj = c−
∑n

i=1,i 6=j ai.

Lemma 29. Let h be a decreasing and convex function h : R → R and consider the map

g(x1, .., xn) =
∑n

i=1 h(xi). The maximum of g in the region defined by the restrictions

ai ≤ xi ≤ b i = 1, ..., n and
∑n

i=1 xi = b for fixed ai, b is reached at the points with

coordinates xi = ai for all i = 1, ..., n except for exactly one xj with corresponding aj =

argmin {ai : i = 1, . . . , n} for which xj = c−
∑n

i=1,i 6=j ai.

Proof of lemmas 28 and 29 can be found in Stromberg [19]

Theorem 30. For ~p ∈ V (JM) − V (CJM) then ASλ (~p, ~q) where 0 < λ < 1 (λ > 1) is

maximal for ~q ∈ V (CJM) such that qi = pi for all i = c+ 1, . . . , k except exactly one qj

with corresponding pj = argmax {pi : i = c+ 1, . . . , k}

(pj = argmin {pi : i = c+ 1, . . . , k}) for which qj = 1−
∑

i=c+1,i 6=j pi.

Proof. We note that only ~q ∈ V (CJM)≥~p need be considered. To see this suppose ~q ∈

V (CJM) is such that qi < pi for i ∈ I and qi ≥ pi for i ∈ J where I, J forms a partition

of the set of indices {c+ 1, . . . , k}. Then we can always find another ~q′ ∈ V (CJM) with

q′i = pi for i ∈ I and qi ≥ q′i ≥ pi for i ∈ J . In this case for any t-norm T we have that:

ET

(

pi, q
′
i

)

= 1 ≥ ET (pi, qi) for i ∈ I and

ET

(

pi, q
′
i

)

≥ ET (pi, qi) for i ∈ J since qi ≥ q′i ≥ pi

Now, since quasi-arithmetic means are non-decreasing functions in each variable it follows

that:

AS
(

~p, ~q′
)

≥ AS (~p, ~q)

and therefore AS (~p, •) is not maximal at ~q. Now for ~q ∈ V (CJM)≥~p we have that:

ASλ (~p, ~q) = f
(−1)
λ

(

∑k
i=1

∣

∣pλi − qλi
∣

∣

λk

)



Hence, since f (−1) is a decreasing function and k > 0 it follows that maximizing ASλ (~p, ~q)

is equivalent to minimizing
|pλi −qλi |

λ
subject to the constraints that qi ≥ pi : i = c+1, . . . , k.

Now since ~q ∈ V (CJM)≥~p

∣

∣pλi − qλi
∣

∣

λ
=

∑c
i=1 p

λ
i +

∑k
i=c+1

(

qλi − pλi
)

λ
=

∑c
i=1 p

λ
i −

∑k
i=c+1 p

λ
i

λ
+

∑k
i=c+1 q

λ
i

λ

which is minimal when
∑k

i=c+1 q
λ
i is minimal. Now trivially minimizing

∑k
i=c+1 q

λ
i is

equivalent to maximizing:

k − c−
k
∑

i=c+1

qλi =

k
∑

i=c+1

1− qλi

and for λ < 1 1 − qλ is a decreasing concave function of q and hence the required result

follows by lemma 28. For λ > 1 1− qλ is a decreasing convex function of q and hence the

required result follows by lemma 29

We now introduce a non-additive measure of similarity based on min. Naturally, this

measure tends to be more conservative than AS.

Definition 31. Minimum based Similarity Measure

Let T be a continuous t-norm then we define the following measure of similarity:

MinS (~p, ~q) = min ({ET (pi, qi) : i = c+ 1, . . . , k})

MinS given in definition 31 is restricted to the components i = c+1, . . . , k for similar

reasons to those discussed regarding the distance metric ‖ • ‖>c
∞ in section 3.1.

Theorem 32. (a) For a continuous non-strict archimedean t-norm T with additive gener-

ator f , then for ~p ∈ V (JM)−V (CJM) such that
∑k

i=c+1 pi > 0, MinS (~p, ~q) is maximal

across ~q ∈ V (CJM) when all values of f (pi)− f (qi) are equal for i = c+ 1, . . . , k

(b) For a continuous strict archimedean t-norm T with additive generator f , then for

~p ∈ V (JM) − V (CJM) such that
∑k

i=c+1 pi > 0, MinS (~p, ~q) is maximal across ~q ∈

V (CJM) when qi = 0 for i ∈ I and f (pi) − f (qi) = f (pj) − f (qj) for i 6= j ∈

{c+ 1, . . . , k} − I where I = {i > c : pi = 0}.

Proof. As in theorem 30 we can restrict consideration to ~q ∈ V (CJM)≥~p.

(a) Since both f and f (−1) are continuous it is possible to find ~̂p ∈ V (CJM)≥~p such that:

f (pi)− f (p̂i) = f (pj)− f (p̂j) i, j = c+ 1, . . . , k

By theorem 24 this trivially implies that

ET (pi, p̂i) = ET (pj, p̂j) i, j = c+ 1, . . . , k



Now consider another ~q ∈ V (CJM)≥~p such that ~q 6= ~̂p. Then since
∑k

i=c+1 qi =
∑k

i=c+1 p̂i = 1 it must hold that for some j ∈ {c+ 1, . . . , k} qj > p̂j > pj.

Since f is a strictly decreasing function and qj > p̂j > pj then

|f (pj)− f (qj)| = f (pj)− f (qj) > f (pj)− f (p̂j) = |f (pj)− f (p̂j)|

⇒ f (−1) (|f (pj)− f (qj)|) < f (−1) (|f (pj)− f (p̂j)|)

⇒ ET (pj, qj) < ET (pj, p̂j) (by theorem 24) = MinS
(

~p, ~̂p
)

Therefore

MinS (~p, ~q) < MinS
(

~p, ~̂p
)

as required.

(b) From theorem 24 we have that for strict archimedean t-norms that ET (0, qi) = 0 for

qi > 0 and ET (0, 0) = 1. Let ~̂p ∈ V (CJM)≥~p be such that p̂i = 0 for all i ∈ I and let

~q ∈ V (CJM)≥~p be such that qj > 0 for some j ∈ I. Hence,

MinS
(

~p, ~̂p
)

≥ MinS (~p, ~q) = ET (pj, qj) = 0

Now suppose that ~̂p ∈ V (CJM)≥~p is such that p̂i = 0 for all i ∈ I and f (pi) − f (qi) =

f (pj)− f (qj) for i 6= j ∈ {c+ 1, . . . , k} − I. Also let ~q ∈ V (CJM)≥~p be such that qi = 0

for all i ∈ I but where ~q 6= ~̂p. Then by the argument given in part (a) we have that:

MinS
(

~p, ~̂p
)

≥ MinS (~p, ~q)

as required.

Example 33. Normalisations Generated from SMin

Schweizer and Sklar t-norms: fλ (x) =
1−xλ

λ
for λ > 0 and hence fλ (pi)− fλ (qi) =

qλi −pλi
λ

. Therefore, from theorem 32 we have that MinS is maximal when qi =
(

∆+ pλj

)
1
λ
:

i = c+ 1, . . . , k. Now

k
∑

i=c+1

qi =
k
∑

i=c+1

(

∆+ pλi

) 1
λ
= 1 ⇒

k
∏

i=c+1

e(∆+pλi )
1
λ
= e ⇒

[

k
∏

i=c+1

e(∆+pλi )

]

1
λ

= e

⇒
k
∏

i=c+1

e(∆+pλj ) = eλ ⇒ e∆(k−c)
k
∏

i=c+1

ep
λ
i = eλ ⇒ e

∑k
i=c+1 p

λ
i = eλ−∆(k−c)

⇒ ∆ =
λ−

∑k
i=c+1 p

λ
i

k − c
⇒ qj =

[

λ−
∑k

i=c+1 p
λ
i

k − c
+ pj

] 1
λ

: j = c+ 1, . . . , k

Notice in the case that λ = 1, (i.e.: Lukasiewicz t-norm), we have the, now familiar,

normalisation:

qj = pj +

∑c
i=1 pi

k − c
j = c+ 1, . . . , k



This is not surprising given theorem 18 since for λ = 1

MinS (~p, ~q) = min {1− |pi − qi| : i = c+ 1, . . . , k}

and maximizing this function is equivalent to minimizing:

max {|pi − qi| : i = c+ 1, . . . , k} = ‖~p− ~q‖>c
∞

Product t-norm: For i ∈ I qi = 0 = pi∑k
i=c+1 pi

. For i ∈ {c+1, . . . , k}−I f (x) = − log (x)

and therefore f (pi)− f (qi) = log (qi)− log (pi) = log
(

qi
pi

)

. Therefore, log
(

qi
pi

)

= ∆ : i =

c+ 1, . . . , k ⇒ qi = pie
∆ : i = c+ 1, . . . , k and hence:

k
∑

i=c+1

qi = e∆
k
∑

i=c+1

pi = 1 ⇒ e∆ =
1

∑k
i=c+1 pi

⇒ qj =
pj

∑k
i=c+1 pi

: j = c+ 1, . . . , k

3.3 Cross Entropy Normalisation Methods

Cross (relative) entropy, sometimes referred to as Kullback-Leibler distance [11], provides

a measure of distance between probability distributions defined as follows:

Definition 34. Cross (Relative) Entropy

The cross entropy of a distribution P relative to a distribution Q on universe X is given

by:

CE (P‖Q) =
∑

x∈X

P (x) log2

(

P (x)

Q (x)

)

Strictly speaking CE (P‖Q) is not a distance metric because it is not symmetric and

does not satisfy the triangle inequality. However, it does have the following desirable

property:

Theorem 35. CE (P‖Q) ≥ 0 with equality if and only if P = Q.

CE (P‖Q) can be interpreted as the change in information when a prior distribution

P is updated to a posterior distribution Q on the basis of new evidence. Since elements

of JM are (technically) probability distributions on F × G we can evaluate the cross

entropy CE (~q‖~p) for ~p ∈ V (JM)− V (CJM) and ~q ∈ V (CJM). In this case CE (~q‖~p)

quantifies the change in information when the assignment ~p is updated to ~q on the basis

of the assumption that the two sources of evidence are consistent.

The following theorem shows that the cross entropy measure CE (~q‖~p) supports the

standard normalisation method as used in Dempsters rule where masses of focal set pairs

with non-empty intersection are simply renormalised so that they sum to one. This result

is an extension of that given in [12] where only possibility distributions were considered.



Theorem 36. For any joint belief assignment ~p ∈ V (JM)−V (CJM) such that pj > 0

for j = c + 1, . . . , k there exists a unique consistent joint belief assignment ~q ∈ V (CM)

where ~q has minimum cross entropy relative to ~p given by ~q = ~̂p where:

p̂i =

{

0 : i = 1, . . . , c
pi

1−
∑c

j=1 pj
: i = c+ 1, . . . , k

Proof.

CE (~q‖~p) =

qc+1 log2

(

qc+1

pc+1

)

+ . . . + qk−1 log2

(

qk−1

pk−1

)

+ (1−
k−1
∑

j=c+1

qj) log2

(

(1−
∑k−1

j=c+1 qj)

pk

)

Therefore,

∂CE

∂qi
= log2

(

qi

pi

)

− log2

(

(1−
∑k−1

j=c+1 qj)

pk

)

Now CE is minimal when ∂CE
∂qi

= 0 and hence when,

qi

pi
=

(1−
∑k−1

j=c+1 qj)

pk
: i = c+ 1, . . . , k − 1

Therefore, pi
qi

=
pj
qj

: j 6= i and in particular, qi =
qc+1

pc+1
pi : i = c+ 2, . . . , k − 1

Also

qc+1

pc+1
=

(1− qc+1 −
∑k−1

j=c+2 qj)

pk

⇒ qc+1 =
pc+1(1− qc+1)− qc+1

∑k−1
j=c+2 pj

pk
=

pc+1 − qc+1
∑k−1

j=c+1 pj

pk

⇒ qc+1pk + qc+1

k−1
∑

j=c+1

pj = pc+1 ⇒ qc+1



1−
k−1
∑

j=1

pj +

k−1
∑

j=c+1

pj



 = pc+1

⇒ qc+1



1−
c
∑

j=1

pj



 = pc+1 ⇒ qc+1 =
pc+1

(

1−
∑c

j=1 pj

)

Therefore,

qi =
qc+1

pc+1
pi =

pc+1
(

1−
∑c

j=1 pj

)

pi

pc+1
=

pi
(

1−
∑c

j=1 pj

) : i = c+ 1, . . . , k

as required.

Joslyn [8] has argued against the application of entropy measures at the basic belief

assignment level because their use implicitly assumes a probabilistic interpretation. While



the latter is certainly true it may be the case that under certain circumstances such an

interpretation is appropriate. One possibility is the use of a voting model (Gaines [6]

and Baldwin [1]) to elicit belief assignments. In this interpretation, each member v of a

population of voters V is asked to identify the set of worlds ‘S (v) ⊆ Ω’ for which the

constraint w∗ ∈ S (v) is the most precise representation of their current knowledge. A

frequentist model is then used to evaluate a basic belief assignment according to:

∀F ⊆ Ω m (T ) =
1

|V |
|{v ∈ V : S (v) = F}|

In the case of evidence combination the voting model would be conceptually as follows: It

is assumed that there are two distinct populations, V1 and V2 each with opinions regarding

w∗. For example these might be populations of different types of medical expert. The

agent carrying out evidence combination would then select a population V1,2 ⊆ V1 × V2

of pairs of voters (vi, vj) where vi ∈ V1 and vj ∈ V2. For each pair both of the voters are

asked to provide S (v) from which a joint belief assignment would be obtained according

to:

m (F,G) =
1

|V1,2|
|{(vi, vj) ∈ V1,2 : S (vi) = F, S (vj) = G}|

In this case we can view S (vi) and S (vj) as distinct random sets and m as a joint distribu-

tion on (S (vi) , S (vj)). From this perspective we can clearly interpret m probabilistically

which would provide some justification for the use of the cross entropy measure. In-

terestingly, cross entropy suggests that the normalisation minimizing information change

corresponds, in the above voting model, to simply removing those pairs (vi, vj) for which

S (vi) ∩ S (vj) = ∅ from V1,2 and then recalculating m accordingly.

Another probabilistic interpretation of Dempster-Shafer theory was proposed by Lem-

mer [14] where the elements of Ω correspond to labels for a set of objects O. These labels

are defined so that one and only one can be truthfully applied to any given object o ∈ O.

We now suppose that there are two sensor s1 and s2 which measure different character-

istics of an object, each providing some evidence as to the correct label. Furthermore,

suppose that this evidence restricts the label of o ∈ O to a subset S (si, o) ⊆ Ω. We then

define m1, m2 and m in terms of frequencies as follows:

m1 (F ) =
1

|O|
|{o ∈ O : S (s1, o) = F}|

m2 (G) =
1

|O|
|{o ∈ O : S (s2, o) = G}|

m (F,G) =
1

|O|
|{o ∈ O : S (s1, o) = F, S (s2, o) = G}|

We shall return to consider an example of this semantics in section 4.

Both the voting model and Lemmer’s semantics can be view as special cases of a more

general random set semantics described as follows: In this semantics an evidence source



corresponds to a random set mapping from an underlying system state to a set of possible

states of the world.

Definition 37. A Source of Evidence

Let S = {xi}i be a set of underlying system states (assumed to be finite for simplicity).

Then a source of evidence about the true state of the world is a random set E : S → 2Ω.

For example, E might be a sensor with some built in error tolerance so that it outputs

a range of values indicating the presence or absence of certain properties from a system

when it is in a particular state. From this perspective then, the true state of the world is

a functional mapping from S into Ω as follows:

Definition 38. The true-state of the world

The true state of the world is a function w∗ : S → Ω

This formulation allows us to state precisely what its means for an evidence source to

be reliable regarding a particular state of the system, since in such a case we would expect

w ∗ (x) ∈ E(x).

Definition 39. Reliable Evidence

A source of evidence E is said to be reliable at state x if w∗ (x) ∈ E (x).

Now given two sources of evidence E1, E2 : S → 2W and a probability measure µ on

2S we can define assignments m1, m2 and m according to:

∀F ⊆ W m1(F ) = µ(x ∈ S : E1(x) = F )

∀G ⊆ W m2(G) = µ(x ∈ S : E2(x) = G)

m(F,G) = µ(x ∈ S : E1(x) = F,E2(x) = G)

3.4 Summary of Normalisation Methods

The above sub-sections have provided some justification for three main normalisation

methods, on the basis of a range of distance metrics and similarity measures. These are

summarised below:

Normalisation Method 1

ν (m) = m̂ where ∀F ∈ F ,∀G ∈ G:

m̂ (F,G) =

{

0 : if F ∩G = ∅

m (F,G) +
∑

(F,G):F∩G=∅m(F,G)

|{(F,G):F∩G 6=∅}| : otherwise

According to this method the mass assigned to pairs with empty intersection in reallocated

uniformly to all other pairs of focal sets. Such a normalisation method is supported by all

p-norms with s ≥ 2 (theorem 12) including ‖ • ‖>c
∞ (theorem 18), and by default SMin



based on the Lukasiewicz t-norm (example 33).

Normalisation Method 2

ν (m) = m̂ where ∀F ∈ F ,∀G ∈ G:

m̂ (F,G) =

{

0 : if F ∩G = ∅
m(F,G)∑

(F,G):F∩G6=∅ m(F,G) : otherwise

This is the standard normalisation method as applied in Dempster’s rule whereby the

mass assigned to focal pairs with non-empty intersections is simply rescaled so that these

values sum to one. This normalisation method arises from the cross entropy measure of

distance (theorem 36) and also the SMin similarity measure based on the product t-norm

(example 33) .

Normalisation Method 3

ν (m) = m̂ where ∀F ∈ F ,∀G ∈ G:

m̂ (F,G) =











0 : if F ∩G = ∅

m (F,G) +
∑

(F,G):F∩G=∅m (F,G) : if m (F,G) is maximal (minimal)

m (F,G) : otherwise

In the case that the maximum (minimum) of m is not unique then one of the values is

selected arbitrarily.

This normalisation method simply allocates all the mass associated with the empty

set to the focal set pair with maximum (minimum) mass under m. All other values of

m remain unchanged. The normalisation method results from the assumption of AS

similarity measures based on the Schweizer and Sklar family of t-norms (theorem 30).

4 Similarity Based Extension Functions

In this section we will argue that the decision to apply a combination operator of the type

given in definition 9 carries with it an implicit assumption of consistency, rather than an

assumption of independence as underlies Dempster’s rule. To make the case for this claim

we begin by considering the situation where both sources of evidence are certain.

Suppose that source one asserts ‘w∗ ∈ F ’ and source two asserts ‘w∗ ∈ G’ where, while

certain, both F and G are highly imprecise (e.g. |F | = |G| = |Ω|
2 ). In this situation it is

perfectly possible that the combined evidence F ∩ G is very precise (e.g. |F ∩ G| = 1).

But what is the justification for inferring precision from imprecision in this way? Surely,

the only possible justification lies in the belief of the agent carrying out the combination,

that the true state of the world w∗ is contained both in F and in G. Clearly, this can only

be the case if F and G are consistent (i.e. F ∩G 6= ∅).



We now claim, in view of this argument and since a combination operator as given in

definition 9 is a method of intersecting two uncertain sources of evidence, that when an

agent makes a decision to apply such an operator they are assuming that both sources are

reliable for most system states in the sense of definition 39 and hence as a consequence they

are implicitly assuming at least a high level of consistency between the sources. If this were

not the case they would adopt a different method of evidence combination, perhaps by

taking union or by applying some kind of additive aggregation operator. In other words, it

is only really meaningful to intersect two sources of evidence if they are dependent in the

sense that they both relate to the true state of the world w∗. Hence, once the decision to

intersect m1 and m2 has been made then the joint belief assignment m should be chosen to

take account of the implicit assumption of consistency between the two sources. That is,

m should be as close as possible (as measured by some metric) to a consistent assignment

as is permitted by the constraint that its marginals are m1 and m2. In our notation this

means that ~p ∈ V (JM1,2) should be selected so that the distance from (or similarity of)

~p to the closest (most similar) element of V (CM) should be minimal (maximal). Since,

the closest element in V (CM) to a given ~p ∈ V (JM1,2) is its normalisation ~̂p then the

problem reduces to identifying that ~p ∈ V (JM1,2) closest to its normalised assignment
~̂p. Notice that, if we view normalisation as a form of error correction, then selecting the

joint belief assignment in this way means that the effect of normalisation is minimized.

In an attempt to clarify the above argument we now make a case for the maximal

consistency assumption within the context of constructive probabilities introduced by

Shafer [17] (see Voorbraak [20] for an exposition); this being the framework in which

Shafer initially justifies Dempster’s rule. Suppose we have a set of codes C and a message

X. The codes are selected at random by the sender according to probability distribution

P1 which is also known to the receiver. The message X contains information regarding the

true state of the world and applying code ci ∈ C, X decodes to the constraint ‘w∗ ∈ ci (X)’

where ci (X) ⊆ Ω. The basic belief assignment m1 (F ) then corresponds to the receivers

probability that the message sent was ‘w∗ ∈ F ’ as given by:

m1 (F ) =
∑

ci:ci(X)=F

P1 (ci)

Now further suppose that we also have a second set of codes D selected at random according

to distribution P2 in order to encode a second message Y . Y also relates to the true state

of the world so that for dj ∈ D, dj (Y ) ⊆ Ω. Let the basic belief assignment for Y be m2.

Consider then the receivers knowledge regarding the actual pair of codes (ci, dj) used

to encode messages X and Y respectively. Let P (ci, dj |X,Y ) be the receivers distribution

on pairs (ci, dj) taking into account the two received messages X and Y . The joint belief

assignment is then defined in terms of this distribution according to:

m (F,G) =
∑

(ci,dj):ci(X)=F,dj(Y )=G

P (ci, dj |X,Y )



Now it would seem reasonable to argue thatm should have marginalsm1 andm2 as follows:

Knowing X and Y does not give the receiver any additional information regarding ci (dj)

beyond that which is already provided by the prior distribution P1 (P2). Hence,

∀ci ∈ C P (ci|X,Y ) =
∑

dj∈D

P (ci, dj |X,Y ) = P1 (ci) and

∀dj ∈ D P (dj |X,Y ) =
∑

ci∈C

P (ci, dj |X,Y ) = P2 (dj)

Dempster’s rule then results from the additional assumption that knowing X and Y does

not provide any further information regarding pairs (ci, dj) than is provided separately by

the prior distributions P1 and P2. That is:

P (ci, dj |X,Y ) = P1 (ci)P2 (dj)

We argue that such an assumption is unrealistic given the receiver’s decision to intersect

messages X and Y . More specifically, we suggest that the decision to intersect X and Y is

likely to have resulted from an assumption similar to the following: Either the encoding,

transmission or decoding process may result in some errors to either X or Y . However,

these errors are not sufficient to invalidate the assumption that w∗ ∈ ci (X)∩dj (Y ) where

ci and dj are the actual codes used. But this reasoning suggests that the receiver would

tend to give higher values to P (ci, dj |X,Y ) for those pairs (ci, dj) where ci (X)∩dj (Y ) 6= ∅,

since it is only for such codes that w∗ ∈ ci (X)∩dj (Y ) can possibly be true. Consequently,

X and Y do provide some additional information regarding the probability of pairs of

codes.

Perhaps not surprisingly the criterion of maximal consistency does not always yield a

unique joint belief assignment in which case we follow Cattaneo [5] in then selecting the m

which results in the least specific combined belief assignment as identified by the following

measure due to Klir and Wierman [10]:

Definition 40. Nonspecificity

N (m) =
∑

S 6=∅

m (S) log2 (|S|)

Insisting on maximum nonspecificity in this manner has the advantage that when

taken in conjunction with maximal consistency selection of joint assignments it ensures

that the resulting combination operator is idempotent. Also, this criterion mimimizes the

information context of the resulting belief function beyond that which can be justified by

the maximum consistency assumption. In those cases where nonspecificity still does not

yield a unique solution we propose (again following Cattaneo [5] ) that the centre of mass

of the volume representing the remaining assignments should then selected.

In the results presented below we restrict consideration to the following two subsets of

V (JM1,2):



Definition 41.

V (JM1,2)
+ =

{

~p ∈ V (JM1,2) :

k
∑

i=c+1

pi > 0

}

V (JM1,2)
++ = {~p ∈ V (JM1,2) : pi > 0 for i = c+ 1, . . . , k}

V (JM1,2)
+ is simply the set of joint belief assignments that are not totally incon-

sistent (i.e.
∑

(F,G):F∩G=∅m (F,G) < 1). While some distance metrics (e.g. p-norms) do

provide a solution to the normalisation problem even in the case of total inconsistency it

seems intuitively unreasonable to select such an assignment if other, (partially) consistent,

assignments are available. In those cases where V (JM1,2)
+ = ∅ we would argue that it

is unreasonable to consider combining m1 and m2 conjunctively as they cannot be consis-

tent. V (JM1,2)
++ ⊂ V (JM1,2)

+ further restricts the set of joint belief assignments to

those that give non-zero mass to all pairs of focal elements with non-empty intersections.

Such a restriction is more difficult to justify intuitively, although we might claim that no

consistent focal pair should be ruled out a priori. Certainly, however, it is necessary to

restrict ourselves in this way, when using the cross entropy measure which is undefined

outside V (JM1,2)
++.

Theorem 42. For any ~p ∈ V (JM1,2)
+ let ~̂p be the normalisation of ~p defined by:

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k

then ‖~p− ~̂p‖s, for s ≥ 2 is minimal across V (JM1,2)
+ if and only if the following function

of ~p is minimal:

c
∑

j=1

psj +

(

∑c
j=1 pj

)s

(k − c)s−1

Proof. Minimizing ‖~p − ~̂p‖s is equivalent to minimizing

c
∑

j=1

psj +

(

k
∑

c+1

‖pj − p̂j‖
s

)

=

c
∑

j=1

psj +

k
∑

j=c+1

(

∑c
j=1 pj

)s

(k − c)s

=

c
∑

j=1

psj +

(

∑c
j=1 pj

)s

(k − c)s−1

Theorem 43. For any ~p ∈ V (JM1,2)
+ let ~̂p be the normalisation of ~p defined by:

p̂i =

{

0 : i = 1, . . . , c

pi +
∑c

j=1 pj

k−c
: i = c+ 1, . . . , k



then ‖~p − ~̂p‖>c
∞ is minimal across V (JM1,2)

+ if and only if
∑c

j=1 pj is minimal

Proof. The result follows trivially since

‖~p − ~̂p‖>c
∞ =

c
∑

j=1

pj

Theorem 44. For any ~p ∈ V (JM1,2)
+ let ~̂p be the normalisation of ~p defined by:

p̂i =







0 : i = 1, . . . , c
pi∑k

i=c+1 pi
: i = c+ 1, . . . , k

then MinS
(

~p, ~̂p
)

based on the product t-norm is maximal across V (JM1,2)
+ if and only

if
∑c

j=1 pj is minimal

Proof.

MinS
(

~p, ~̂p
)

= min

{

min

(

pi

p̂i
,
p̂i

pi

)

: i ∈ I

}

=
pi

p̂i
=

k
∑

j=c+1

pj

= 1−
c
∑

j=1

pj

which is maximal when
∑c

j=1 pj is minimal.

Theorem 45. For any ~p ∈ V (JM1,2)
++ let ~̂p be the normalisation of ~p defined by:

p̂i =







0 : i = 1, . . . , c
pi∑k

i=c+1 pi
: i = c+ 1, . . . , k

Then the cross entropy of ~̂p relative to ~p is minimal across V (JM1,2)
++ if and only if

∑c
j=1 pj is minimal.

Proof.

CE =

k
∑

i=c+1

p̂i log2

(

p̂i

pi

)

=

k
∑

i=c+1

pi

1−
∑c

j=1 pj
log2





pi
(

1−
∑c

j=1 pj

)

pi





= log2

(

1

1−
∑c

j=1 pj

)

k
∑

i=c+1

pi

1−
∑c

j=1 pj
= log2

(

1

1−
∑c

j=1 pj

)

∑k
i=c+1 pi

1−
∑c

j=1 pj

log2

(

1

1−
∑c

j=1 pj

)

1−
∑c

i=1 pi

1−
∑c

j=1 pj
= log2

(

1

1−
∑c

j=1 pj

)

= − log2



1−
c
∑

j=1

pj





Now log2(1− x) is strictly increasing for x ∈ [0, 1] and hence CE is minimal if and only if
∑c

j=1 pj is minimal.



Theorems 42-45 provide constraints on the joint belief assignment that should be se-

lected from JM1,2. These motivate the three combination operators outlined in the

following section.

4.1 Summary of Combination operators

On the basis of theorems 42-45 and the results given in section 3 the metrics ‖•‖s : s ≥ 2,

‖ • ‖>c
∞ and CE together with SMin based on the product t-norm, provide a level of

justification for a number of different combinations of extension function and normalisation

method. These can then be used to generate the three combination operators given below,

by taking the composition as in definition 9.

Combination Operator 1: Based on ‖•‖s with s ≥ 2 (see theorem 12 and theorem 42)

Extension Function: Select m ∈ JM1,2 to be the centre of mass of the most nonspecific

joint belief assignments minimizing the expression:

∑

(F,G):F∩G=∅

m (F,G)s +

(

∑

(F,G):F∩G=∅m (F,G)
)s

|{(F,G) : F ∩G 6= ∅}|s−1

Normalisation Method: The selected joint assignment m is normalised according to:

m̂ (F,G) =

{

0 : if F ∩G = ∅

m (F,G) +
∑

(F,G):F∩F=∅m(F,G)

|{(F,G):F∩G 6=∅}| : otherwise

Combination Operator 2: Based on ‖ • ‖>c
∞ (see theorem 18 and theorem 43)

Extension Function: Select m ∈ JM1,2 to be the centre of mass of the most nonspecific

joint belief assignments minimizing the expression:

∑

(F,G):F∩G=∅

m (F,G)

Normalisation Method: The selected joint assignment m is normalised according to:

m̂ (F,G) =

{

0 : if F ∩G = ∅

m (F,G) +
∑

(F,G):F∩F=∅m(F,G)

|{(F,G):F∩G 6=∅}| : otherwise

Combination Operator 3: Based on CE and MinS with the product t-norm (see

theorem 36 and theorem 45 or example 33 and theorem 44). This is identical to the

operator proposed by Cattaneo [5].

Extension Function: Select m ∈ JM1,2 to be the centre of mass of the most nonspecific

joint belief assignments minimizing the expression:

∑

(F,G):F∩G=∅

m (F,G)



Normalisation Method: The selected joint assignment m is normalised according to:

m̂ (F,G) =

{

0 : if F ∩G = ∅
m(F,G)∑

(F,G):F∩G6=∅ m(F,G) : otherwise

The following example illustrates the range of different solutions that can be obtained

from these three operators.

Example 46. Let m1 be defined by

m1 ({x1, x2, x3}) = 0.4,m1 ({x1, x2}) = 0.3,m1 ({x1}) = 0.3

Let m2 be defined by

m2 ({x2, x3}) = 0.5,m2 ({x3}) = 0.5

The set of joint belief assignments JM1,2 can then be represented by the following tableau:

F × G {x2, x3} : 0.5 {x3} : 0.5

{x1, x2, x3} : 0.4
{x2, x3}

p6
{x3}
p5

{x1, x2} : 0.3
{x2}
p4

∅
p3

{x1} : 0.3
∅
p2

∅
p1

Subject to the following constraints:

p5 + p6 = 0.4, p3 + p4 = 0.3, p1 + p2 = 0.3, p2 + p4 + p6 = 0.5, p1 + p3 + p5 = 0.5

p1 + p2 + p3 + p4 + p5 + p6 = 1

Hence, we can define:

V (JM1,2) = {〈p4 + p6 − 0.2, 0.5 − p4 − p6, 0.3 − p4, p4, 0.4 − p6, p6〉 ∈ [0, 1]6}

Also, in this case:

V (CJM) =

{

〈0, 0, 0, q4, q5, q6〉 ∈ [0, 1]6 :

6
∑

i=4

qi = 1

}

Now the extension function based on ‖•‖2 requires that we minimize the following function:





c
∑

j=1

p2j



+

(

∑c
j=1 pj

)2

(k − c)
= (0.3− p4)

2 + (0.5 − p4 − p6)
2 + (p4 + p6 − 0.2)2 +

(0.6 − p4)
2

3

This is minimal when p4 = 0.3 and p6 = 0.05 which generates the following (in this case)

unique joint belief assignment:



F × G {x2, x3} : 0.5 {x3} : 0.5

{x1, x2, x3} : 0.4
{x2, x3}
0.05

{x3}
0.35

{x1, x2} : 0.3
{x2}
0.3

∅
0

{x1} : 0.3
∅

0.15
∅

0.15

Normalizing according to p̂i = pi+
∑c

j=1 pj

k−c
: i = c+1, . . . , k as required by combination

operator 1 then gives:

F × G {x2, x3} {x3}

{x1, x2, x3}
{x2, x3}
0.15

{x3}
0.45

{x1, x2}
{x2}
0.4

∅
0

{x1}
∅
0

∅
0

Hence:

m1 ⊕e,ν m2 ({x2, x3}) = 0.15, m1 ⊕e,ν m2 ({x2}) = 0.4 m1 ⊕e,ν m2 ({x3}) = 0.45

Alternatively, an extension function based on Cross Entropy, MinS with the product

t-norm or ‖ • ‖>c
∞ requires that we minimize:

c
∑

i=1

pi = 0.6− p4

This is minimal when p4 = 0.3 which generates the following set of joint belief assignments:

F × G {x2, x3} : 0.5 {x3} : 0.5

{x1, x2, x3} : 0.4
{x2, x3}

p6

{x3}
0.4− p6

{x1, x2} : 0.3
{x2}
0.3

∅
0

{x1} : 0.3
∅

0.2 − p6
∅

0.1 + p6

where p6 ≤ 0.2.

Hence, applying the normalisation p̂i =
pi∑k

i=c+1 pi
as required by combination operator

3 gives:

m1 ⊕e,ν m2 ({x2, x3}) =
p6

0.7
, m1 ⊕e,ν m2 ({x2}) =

3

7
, m1 ⊕e,ν m2 ({x3}) =

0.4− p6

0.7
where p6 ≤ 0.2



The nonspecificity of this mass assignment is then given by:

N (m1 ⊕e,ν m2) =
∑

S 6=∅

m1 ⊕e,ν m2 (S) log2 (|S|)

=
p6

0.7
log2 (2) +

0.4− p6

0.7
log2 (1) +

3

7
log2 (1) =

p6

0.7

which is maximal when p6 = 0.2 so that:

m1 ⊕e,ν m2 ({x2, x3}) =
2

7
, m1 ⊕e,ν m2 ({x2}) =

3

7
, m1 ⊕e,ν m2 ({x3}) =

2

7

Alternatively applying the normalisation p̂i = pi +
∑c

i=1 pi
k−c

: i = c+1, . . . , k as in combina-

tion operator 2 gives:

m1 ⊕e,ν m2 ({x2, x3}) = p6 + 0.1, m1 ⊕e,ν m2 ({x2}) = 0.4, m1 ⊕e,ν m2 ({x3}) = 0.5− p6

where p6 ≤ 0.2

The nonspecificity of this mass assignment is then given by:

N (m1 ⊕e,ν m2) =
∑

S 6=∅

m1 ⊕e,ν m2 (S) log2 (|S|)

= (p6 + 0.1) log2 (2) + (0.5− p6) log2 (1) + 0.4 log2 (1) = p6 + 0.1

which is maximal when p6 = 0.2 so that:

m1 ⊕e,ν m2 ({x2, x3}) = 0.3, m1 ⊕e,ν m2 ({x2}) = 0.4, m1 ⊕e,ν m2 ({x3}) = 0.3

We now consider an example proposed by Lemmer [14] (also discussed by Voorbraak

[20]) based on his interpretation of Dempster-Shafer theory in terms of labelling objects

(section 3.3) and use this to illustrate our argument that the decision to intersect different

sources of evidence carries with it an implicit assumption of consistency. Clearly, in this

example Dempster’s rule cannot be applied since the sources of evidence are dependent in

that they measure different attributes of the same object. In this sense we claim that it

is typical of many sensor fusion problems.

Example 47. Suppose we have an urn of balls O each labelled by with one and only one

of the labels from Ω = {a, b, c}. Each ball also has the following physical characteristics:

Its weight is either light or heavy and its colour is either red or blue. Furthermore, light

balls are known to be labelled a whereas heavy balls are labels either b or c, and blue balls

are labelled c whereas red balls are either a or b. Let s1 be a sensor classifying weight and

s2 be a sensor classifying colour. Also, let P (t) be the fraction of balls in O with label t.

Then according to Lemmer’s model [14] as described in section 3.3:

m1 ({a}) = P (a) , m1 ({b, c}) = 1− P (a)

m2 ({c}) = P (c) , m2 ({a, b}) = 1− P (c)



Now intuitively it seems reasonable to intersect the evidence from these two sensors since

it is based on different characteristics of the same object (i.e the same ball), which is then

aggregated across O. Hence, for any particular o ∈ O, provided the sensors are functioning

correctly, we would expect the true label of o to be contained in the set S (s1, o)∩ S (s2, o).

From this perspective, since Ω contains all possible labels, we would expect a high level of

consistency between the two sources even allowing for a certain degree of error from the

sensors. That is, on average we would expect that S (s1, o) ∩ S (s2, o) 6= ∅.

In the case that P (a) + P (c) ≤ 1 then combination operators 1-3 all give the result:

m1 ⊕e,ν m2 ({a}) = P (a) , m1 ⊕e,ν m2 ({c}) = P (c) ,

m1 ⊕e,ν m2 ({b}) = 1− P (a)− P (c)

This effectively corresponds to the assumption that, given no evidence to the contrary, both

sensors are working correctly. It also yields the same result as a probabilistic analysis of

the evidence. In contrast, Dempster’s rule a priori assumes a level of error (inconsistency)

corresponding to:

∑

(F,G):F∩G=∅

m (F,G) = m ({a} , {c}) = P (a)P (c)

In the case that P (a) +P (c) > 1 then there must be some error in the sensors and hence

some level of inconsistency. The extension functions from operators 1-3 all give:

∑

(F,G):F∩G=∅

m (F,G) = m ({a} , {c}) = P (a) + P (c)− 1

The normalisation method from operators 1 and 2 then yields:

m1 ⊕e,ν m2 ({a}) = 1− P (c) +
1

3
(P (a) + P (c)− 1) ,

m1 ⊕e,ν m2 ({c}) = 1− P (a) +
1

3
(P (a) + P (c)− 1) ,

m1 ⊕e,ν m2 ({b}) =
1

3
(P (a) + P (c)− 1)

Alternatively, the normalisation operator 3 gives:

m1 ⊕e,ν m2 ({a}) =
1− P (c)

2− P (a)− P (c)
,

m1 ⊕e,ν m2 ({c}) =
1− P (a)

2− P (a)− P (c)
,

m1 ⊕e,ν m2 ({b}) = 0

In terms of random set semantics we have that:

S = {〈light, red〉 , 〈light, blue〉 , 〈heavy, red〉 , 〈heavy, blue〉}



and we have two sources of evidence E1 and E2 based on sensors s1 and s2 respectively,

such that:

E1 (〈light, red〉) = E1 (〈light, blue〉) = {a}

E1 (〈heavy, red〉) = E1 (〈heavy, blue〉) = {b, c}

and

E2 (〈light, red〉) = E2 (〈heavy, red〉) = {a, b}

E2 (〈light, blue〉) = E2 (〈heavy, blue〉) = {c}

The probability measure µ on 2S is then defined by the following probability distribution

on S:

∀ 〈x, y〉 ∈ S µ (〈x, y〉) =
1

|O|
|{o ∈ O : size of o is x, and colour of o is y}|

Let

µ (〈light, red〉) = µ1, µ (〈light, blue〉) = µ2, µ (〈heavy, blue〉) = µ3

µ (〈heavy, red〉) = 1− µ1 − µ2 − µ3

then

m1 ({a}) = µ1 + µ2 = P (a) , m1 ({b, c}) = 1− µ1 − µ2 = 1− P (a)

m2 ({a, b}) = µ2 + µ3 = P (c) , m2 ({c}) = 1− µ2 − µ3 = 1− P (c)

and

m ({a}, {a, b}) = µ1, m ({a}, {a, b}) = µ2, m ({b, c}, {c}) = µ3

m ({b, c}, {c}) = 1− µ1 − µ2 − µ3

From this perspective the selection functions for combination operators 1-3 identify the

joint belief assignment m for which µ2 = µ (〈light, blue〉) takes the minimum value of

max (0, P (a) + P (c)− 1). The maximizes the possible reliability of the two sources of

evidence in the sense that:

µ (x ∈ S : w∗ (x) ∈ E1 (x) ∩E2 (x)) ≤ µ (x ∈ S : E1 (x) ∩ E2 (x) = ∅) = 1− µ2

Hence, these operators assume the maximum level of reliability for the two sources of

evidence that is permitted by the two observed belief assignments m1 and m2.

In addition, we can interpret the normalisation methods 1 and 2 at the random set level

as follows: Suppose that P (a)+P (c) > 1 then it follows that µ (〈light, blue〉) = µ2 > 0 and

clearly both sources of evidence cannot be reliable at this state. Taking µ2 = P (a)+P (c)−1

then it follows that µ1 = 1 − P (c), and µ3 = 1 − P (a) so that µ (〈heavy, red〉) = 0. Now



since there is no positive evidence of unreliability at any state except 〈light, blue〉 we assume

that the sensors are reliable at all other states. Also since we have no knowledge of the

nature of the error occurring at state 〈light, blue〉 we only know that the true set value for

E1(〈light, blue〉)∩E2(〈light, blue〉) ⊆ Ω−∅. Both normalisation methods then assume the

actual values of E1 and E2 for this state are amongst those which have actually occurred in

the data, so that E1(〈light, blue〉)∩E2(〈light, blue〉) ∈ {F ∩G : F ∈ F , G ∈ G, F∩G 6= ∅}.

Beyond this, normalisation method 1 then assumes that all such set values should be equally

likely giving an assignment:

E1(〈light, blue〉) ∩ E2(〈light, blue〉) = {a} :
1

3
, {b} :

1

3
, {c} :

1

3

In this case:

m1 ⊕e,ν m2 ({a}) = µ1 +
1

3
µ2 = 1− P (c) +

1

3
(P (a) + P (c)− 1) ,

m1 ⊕e,ν m2 ({c}) = µ3 +
1

3
µ2 = 1− P (a) +

1

3
(P (a) + P (c)− 1) ,

m1 ⊕e,ν m2 ({b}) = 1− µ1 − µ2 − µ3 +
1

3
µ2 =

1

3
(P (a) + P (c)− 1)

On the other hand, as with normalisation method 2 we might take the prior probabil-

ity of each value S ∈ {F ∩ G : F ∈ F , G ∈ G, F ∩ G 6= ∅} to be proportional to

µ (x ∈ S : E1(x) ∩ E2(x) = S) so that:

E1(〈light, blue〉) ∩ E2(〈light, blue〉) =

{a} :
µ1

1− µ2
, {b} :

µ3

1− µ2
, {c} :

1− µ1 − µ2 − µ3

1− µ2

In this case:

m1 ⊕e,ν m2 ({a}) = µ1 +
µ1

1− µ2
µ2 =

1− P (c)

2− P (a)− P (c)
,

m1 ⊕e,ν m2 ({c}) = µ3 +
µ3

1− µ2
µ2 =

1− P (a)

2− P (a)− P (c)
,

m1 ⊕e,ν m2 ({b}) = 1− µ1 − µ2 − µ3 +
1− µ1 − µ2 − µ3

1− µ2
µ2 = 0

For this example we might argue that the former solution is perhaps more intuitive than

the latter for the following reason: Inconsistency and hence errors arise when sensor s1

indicates ‘light’ while sensor s2 indicates ‘blue’. The first of the above solutions allows for

the possibility that in such a case both sensors are in fact incorrect, so that the true reading

should be (heavy, red). The second solution effectively rules out this possibility on the

grounds of the high frequency of observed a and c balls (so high in fact that P (a)+P (c) >

1), thereby assuming that only one sensor is in error. However, this seems somewhat

unjustified since there is no knowledge as to the nature of the sensor errors.



The following example is an adaptation of that given in [20] and subsequently discussed

by Liu and Hong [15].

Example 48. Suppose that Jim wants to know whether the street outside is slippery.

Instead of observing this himself, he asks Fred. Fred tells him that ‘it is slippery’. However,

Jim knows that Fred is sometimes careless in answering questions. Based on his knowledge

about Fred, Jim estimates that α × 100% of the time Fred reports what he knows and

(1− α)× 100% he is careless.

Furthermore, suppose Jim has some other evidence about whether the street is slippery:

his trusty indoor-outdoor thermometer says that the temperature is 31oF , and he knows

that because of traffic, ice could not form on the street at this temperature. However, he

knows that the thermometer could be wrong even though it has been very accurate in the

past. Suppose that there is a β × 100% chance that the thermometer is working properly.

For this example Ω = {yes, no} and we have the following two basic belief assignments:

m1 = {yes} : α, {yes, no} : 1− α

m2 = {no} : β, {yes, no} : 1− β

Now one might suppose that the two sources of evidence as represented by Fred and the

thermometer are independent in that there is no direct connection between them. However,

from the point of view of intersecting their output the two sources are dependent in the

sense that they both refer to the slipperiness of the same road. Hence, even allowing for

inaccuracy in the two sources we would expect a high level of consistency between them.

On the other hand, Dempster’s rule assumes that the two sources are independent resulting

in the following joint belief assignment:

m ({yes} , {no}) = α× β, m ({yes} , {yes, no}) = α× (1− β) ,

m ({yes, no} , {no}) = (1− α)× β, m ({yes, no} , {yes, no}) = (1− α)× (1− β)

Hence, Dempster’s rule assumes an a priori belief in the inconsistency of the two sources

of α× β even in those case when α+ β ≤ 1 for which m1 and m2 are consistent.

Alternatively, in the case where α+β ≤ 1 the selection functions for operators 1-3 iden-

tify the following joint belief assignment, where the a priori assumption is no inconsistency

between the sources:

m ({yes} , {no}) = 0, m ({yes} , {yes, no}) = α,

m ({yes, no} , {no}) = β, m ({yes, no} , {yes, no}) = 1− α− β

From this all three operators result in the following combined assignment:

m1 ⊕e,ν m2 ({yes}) = α, m1 ⊕e,ν m2 ({no}) = β, m1 ⊕e,ν m2 ({yes, no}) = 1− α− β



If α+β > 1 then we are forced to assume the existence of some inconsistency between Fred

and the thermometer. The extension function for operators 1-3 all then yield the following

joint assignment, where a priori a minimum mass of α+ β − 1:

m ({yes} , {no}) = α+ β − 1, m ({yes} , {yes, no}) = 1− β,

m ({yes, no} , {no}) = 1− α, m ({yes, no} , {yes, no}) = 0

From this normalisation method 1 (as in operators 1 and 2) gives:

m1 ⊕e,ν m2 ({yes}) = 1− β +
1

3
(α+ β − 1) ,

m1 ⊕e,ν m2 ({no}) = 1− α+
1

3
(α+ β − 1) ,

m1 ⊕e,ν m2 ({yes, no}) =
1

3
(α+ β − 1)

Alternatively, normalisation method 3 (as in operator 3) gives:

m1 ⊕e,ν m2 ({yes}) =
1− β

2− α− β
,

m1 ⊕e,ν m2 ({no}) =
1− α

2− α− β
,

m1 ⊕e,ν m2 ({yes, no}) = 0

5 Conditional Belief Measures

In Dempster-Shafer theory there is a direct link between Dempster’s rule and the definition

of conditional belief and plausibility. Given a prior basic belief assignment m with focal

sets G suppose it is then learnt that w∗ ∈ F . This knowledge can be represented by a

belief assignment m′ for which m′ (F ) = 1 and m′ (F ′) = 0 for F ′ 6= F . A conditional

assignment is then defined according to:

∀S ⊆ Ω m (S|F ) = m′ ⊕m (S) where ⊕ is Dempster’s rule.

from which the associated conditional belief and plausibility measures can be obtained in

the normal manner.

Now clearly this approach can be generalized to other combination operators so that:

∀S ⊆ Ω m (S|F ) = m′ ⊕e,ν m (S)

Interestingly given the definition of m′ there is in fact only one joint belief assignment

with marginals m′ and m defined by: ∀G ∈ G

m (G,F ) = m (G)

m
(

G,F ′
)

= 0 if F ′ 6= F



Hence, the definition of m (•|F ) is dependent only on the normalisation method ν. In view

of this we can now investigate the conditional belief and plausibility measures generated

by the three normalisation methods summarised in section 3.4.

In fact normalisation method 2 is the standard normalisation as applied in Dempster’s

rule and hence any combination operator employing this method will generate the standard

Dempster-Shafer conditionals given by:

∀S ⊆ Ω Bel (S|F ) =
Bel (S ∪ F c)−Bel (F c)

1−Bel (F c)
and

Pl (S|F ) =
Pl (S ∩ F )

Pl (F )

Therefore, we need only focus on normalisation methods 1 and 3.

Now for all normalisation methods the focal elements of the conditional belief assign-

ment are:

GF = {F ∩G : G ∈ G, F ∩G 6= ∅}

By applying method 1 and uniformly reallocating the mass where F ∩G = ∅ it can easily

be seen that m (•|F ) is given by:

∀T ⊆ Ω m (T |F ) =

∑

G∈G:G∩F=T

m (G) +
|{G ∈ G : G ∩ F = T}|

|{G ∈ G : G ∩ F 6= ∅}|
×





∑

G∈G:G∩F=∅

m (G)



 if T ∈ GF

= 0 otherwise

In this case the corresponding belief and plausibility measures are as given in the following

theorem:

Theorem 49. Let m : 2Ω → [0, 1] be a basic belief assignment with focal sets G and

for F ⊆ Ω. If the conditional mass assignment m (•|F ) is generated from normalisation

method 1 then the corresponding conditional belief and plausibility measures defined by

∀S ⊆ Ω Bel (S|F ) =
∑

T :T⊆S m (T |F ) and Pl (S|F ) =
∑

T :T∩S 6=∅m (T |F ) respectively,

are equivalent to:

∀S ⊆ Ω Bel (S|F ) = Bel (F c ∪ S)−
|{G : F ∩G ∩ Sc 6= ∅}|

|{G : F ∩G 6= ∅}|
×Bel (F c)

Pl (S|F ) = Pl (F ∩ S) +
|{G : F ∩G ∩ S 6= ∅}|

|{G : F ∩G 6= ∅}|
(1− Pl (F ))

Proof. Note that
∑

G∈G:G∩F=∅

m (G) =
∑

G∈G:G⊆F c

m (G) = Bel (F c) and hence

m (T |F ) =
∑

G∈G:G∩F=T

m (G) +
|{G ∈ G : G ∩ F = T}|

|{G ∈ G : G ∩ F 6= ∅}|
Bel (F c)



Hence

Bel (S|F ) =
∑

T∈GF :T⊆S

∑

G∈G:G∩F=T

m (G) +
Bel (F c)

|{G ∈ G : G ∩ F 6= ∅}|

∑

T∈GF :T⊆S

|{G ∈ G : G ∩ F = T}|

=
∑

G∈G:G∩F 6=∅, G∩F⊆S

m (G) +
|{G : F ∩G 6= ∅, F ∩G ⊆ S}|

|{G ∈ G : G ∩ F 6= ∅}|
×Bel (F c)

Now

∑

G∈G:G∩F 6=∅, G∩F⊆S

m (G) =
∑

G∈G:F∩G⊆S

m (G)−
∑

G∈G:F∩G=∅

m (G) =

∑

G∈G:G∩F∩Sc=∅

m (G)−Bel (F c) = 1−
∑

G∈G:G∩F∩Sc 6=∅

m (G)−Bel (F c) =

1− Pl(F ∩ Sc)−Bel (F c) = Bel (F c ∪ S)−Bel (F c)

Therefore

Bel(S|F ) = Bel (F c ∪ S)−

(

1−
|{G : F ∩G 6= ∅, F ∩G ⊆ S}|

|{G ∈ G : G ∩ F 6= ∅}|

)

×Bel (F c) =

Bel (F c ∪ S)−

(

|{G ∈ G : G ∩ F 6= ∅}| − |{G : F ∩G 6= ∅, F ∩G ⊆ S}|

|{G ∈ G : G ∩ F 6= ∅}|

)

×Bel (F c) =

Bel (F c ∪ S)−
|{G : F ∩G ∩ Sc 6= ∅}|

|{G ∈ G : G ∩ F 6= ∅}|
×Bel (F c) as required

The result for Pl then follows trivially from the relation Pl (S|F ) = 1−Bel (Sc|F ).

For normalisation method three all the mass associated with the empty set is reallo-

cated to the pair of focal elements with non-empty intersection for which m is maximal

(minimal). This yields the following definition of m (•|F ):

m (T |F ) =











∑

G∈G:G∩F=T m (G) +
∑

G∈G:G∩F=∅m (G) : if F ∩G0 = T
∑

G∈G:G∩F=T m (G) : if T ∈ GF , T 6= F ∩G0

0 : otherwise

where G0 = argmax {m (G) : G ∩ F 6= ∅} (G0 = argmin {m (G) : G ∩ F 6= ∅}).

Theorem 50. Let m : 2Ω → [0, 1] be a basic belief assignment with focal sets G and

for F ⊆ Ω. If the conditional mass assignment m (•|F ) is generated from normalisation

method 3 then the corresponding conditional belief and plausibility measures defined by

∀S ⊆ Ω Bel (S|F ) =
∑

T :T⊆S m (T |F ) and Pl (S|F ) =
∑

T :T∩S 6=∅m (T |F ) respectively,

are equivalent to:

Bel (S|F ) =

{

Bel (F c ∪ S)−Bel (F c) : if F ∩G0 6⊆ S

Bel (F c ∪ S) : if F ∩G0 ⊆ S



Pl (S|F ) =

{

Pl (F ∩ S)− Pl (F ) + 1 : if F ∩G0 ∩ S 6= ∅

Pl (F ∩ S) : if F ∩G0 ∩ S = ∅

Proof. Suppose F ∩G0 6⊆ S then:

Bel (S|F ) =
∑

T∈GF :T⊆S

m (S|F ) =
∑

G:∅6=G∩F⊆S

m (G) =
∑

G:G∩F⊆S

m (G)−
∑

G:G∩F=∅

m (G)

=
∑

G:G⊆F c∪S

m (G)−
∑

G:G⊆F c

m (G) = Bel (F c ∪ S)−Bel (F c)

Suppose F ∩G0 ⊆ S then:

Bel (S|F ) =
∑

T∈GF :T⊆S

m (S|F ) =
∑

G:∅6=G∩F⊆S

m (G) +
∑

G:G∩F=∅

m (G)

=
∑

G:G∩F⊆S

m (G) =
∑

G:G⊆F c∪S

m (G) = Bel (F c ∪ S)

as required. The result for Pl then follows trivially from the relation Pl (S|F ) = 1 −

Bel (Sc|F ).

6 Summary and Conclusions

In this paper we have investigated combination operators formed through the composi-

tion of an extension function and a normalisation method and based on the principle of

maximum proximity or similarity to a consistent solution. We have argued that the latter

is implicit in the decision to intersect the two sources of evidence. Different measures of

distance and similarity between joint belief assignments result in different normalisation

methods and subsequently different extension functions. For example, the choice of a

p-norm ‖ • ‖s with s ≥ 2 results in a normalisation method that uniformly redistributes

mass from pairs of focal sets with empty intersection to those pairs with non-empty in-

tersection. The closest consistent assignments according to these metrics are those which

minimize a particular convex function of m (F,G) : F ∩G = ∅. Alternatively, when prox-

imity is measured by cross entropy or the SMin similarity measure based on the product

t-norm, the appropriate normalisation method redistributes mass proportionately as in

Dempster’s rule. In these cases the corresponding extension function directly minimizes

inconsistency as quantified by
∑

(F,G):F∩G=∅m (F,G). This, together with the assumption

of maximal nonspecificity, results in exactly the combination operator proposed by Cat-

taneo [5]. A hybrid of these two operators can be obtained from the limit metric ‖ • ‖>c
∞

where the normalisation method redistributes mass uniformly but where the extension

function minimizes
∑

(F,G):F∩G=∅m (F,G).

For any normalisation method there is a naturally corresponding definition of condi-

tional belief and plausibility measure. For the three normalisation methods described in



section 3 the subsequent conditional belief and plausibility measures have been investi-

gated in section 5.

In section 4 of this paper we have argued that the decision to intersect two sources

of information carries with it an implicit assumption of consistency rather than one of

independence as in Dempster’s rule. Measuring consistency in terms of proximity to

a consistent assignment results in (amongst other possibilities) the three combination

operators summarised in section 4.1. These operators do unfortunately carry much higher

computational costs than Dempster’s rule. While it is beyond the scope of this paper to

provide a detailed analysis of operator complexity we give a cursory treatment of the issue

below.

The complexity of operators 1-3 stems from two sources. In the first case the extension

function now requires us to solve a linear optimisation problem. However, while more

costly than the independence solution this is not necessarily problematic where only two

sources are being combined. The real difficulty with operators 1-3 lies in their failure

to satisfy associativity (as can easily be seen from any number of counter examples).

This means that multiple sources of evidence cannot be dealt with in a recursive manner

but rather must be combined in a multi-dimensional joint space. However, although

associativity is certainly a desirable property from a computational viewpoint it turns out

to be such a strong assumption that it rules out other properties that are arguably just as

intuitive. In particular Cattaneo [5] shows that there are no operators of the form given in

definition 9 using either normalisation method that are both idempotent and associative

no matter what extension function is employed. For completeness we reproduce Cattaneo’s

counter example below:

Example 51. Let Ω = {A,¬A} for some proposition A and suppose:

m1 ({A}) = α, m1 ({A,¬A}) = 1− α and

m2 ({¬A}) = α, m2 ({A,¬A}) = 1− α

where α > 0.5

Then for any combination operator using either normalisation method 1 or 2 2 we have

that:

m1 ⊕e,ν m2 ({A}) = β, m1 ⊕e,ν m2 ({¬A}) = β, m1 ⊕e,ν m2 ({A,¬A}) = 1− 2β

where β < α

Now assuming both idempotence and associativity gives that:

m1 ⊕e,ν m2 = (m1 ⊕e,ν m1)⊕e,ν m2 = m1 ⊕e,ν (m1 ⊕e,ν m2)

2Cattaneo [5] only considers normalisation method 2, however the result is easily extended to normali-
sation method 1



where the right hand side assignment must then be derived from a joint belief assignment

of the form:

m ({A} , {A}) = α, m ({A} , {¬A}) = 0, m ({A} , {A,¬A}) = 0,

m ({A,¬A} , {A}) = β − α, m ({A,¬A} , {¬A}) = β, m ({A,¬A} , {A,¬A}) = 1− 2β

However, this is only a valid assignment if β ≥ α which is an inconsistency. Hence the

operator cannot be both idempotent and associative.

Clearly, then the case for a combination operator, cannot be made in terms of compu-

tational efficiency alone since properties such as associativity are likely to be inconsistent

with other highly desirable logical properties. Above all there must be a strong episte-

mological justification for any operator and if such a case can be made then attempts to

overcome computational complexity should take the form of identifying useful approxima-

tion algorithms. From this perspective, we hope to provide a more detailed investigation

of complexity and its relation to the principle of maximal consistency in subsequent work.
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